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Abstract. - The energy Vo of the quasi-free electron state in liquid argon is calculated as a 
function of the number density n in the range (0,001 + 0.021) In the calculation, Lekner's 
theory for the scattering of excess electrons in liquid argon is followed, but modern, first- 
principles pseudopotentials are used. By comparing to experiment, it  is shown that our results 
correctly describe not only the order of magnitude of Vo(n), but also the shape of the curve, 
which shows a minimum at n = 1.2.1@' atoms/cm3. These new results are in much closer 
agreement with experimental data than other existing calculations. 

There is a considerable interest in the behaviour of excess electrons in dielectric 
fluids [l]. Transport of electrons injected in nonpolar insulating liquids is characterized by 
electron mobilities similar t o  those encountered in crystalline solids [2]. However, the 
behaviour of the electron mobility over a wide range of liquid densities is still not fully 
understood. In particular, there is no theoretical model providing a precise and com- 
prehensive explanation of this behaviour even for the case of liquid argon, which is simpler 
than most others, because extra electrons in it are in the quasi-free state. 

~ ~ ~~ ~~ ~~ ~ 

(*) Also at  Centre de Recherche en Physique du Solide, Departement de Physique, Faculte des 
Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1. 
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REININGER et al. [31 measured the quasi-free electron energy Vo in liquid argon as a 
function of the liquid density n and observed a minimum in Vo(n) at a density very near that 
corresponding to the well-known mobility maximum. BASAK and COHEN [4] interpreted 
these results by relating the mobility to a deformation potential produced by local density 
fluctuations. These authors suggested that, at the minimum of Vo, the potential fluctuations 
were minimal causing a minimum in the electron scattering and a maximum in the mobility. 
They also calculated the density dependence of the conduction band minimum using 
Lekner's potential [51 in the framework of the Wigner-Seitz approximation. However, the 
minimum of Vo(n) they obtained was shifted towards lower densities in comparison to that 
found from experiment. On the other hand, values of the ground-state energy relative to  the 
vacuum level were systematically too low by about 0.2 eV. 

As noticed by JAHNKE et al. [6], LEKNER [5] used in his calculations the modified static 
Holtsmark [71 potential. The core part of this potential cannot be considered very accurate. 
In fact, Lekner's requirement that the potential reproduce the experimental low-energy 
electron-atom scattering cross-sections is not a sufficient constraint for the quality of the 
core part, since it is well known that the long-range polarizability interaction dominates such 
cross-sections. 

The density dependence of the quasi-free electron ground-state energy calculated by 
REININGER et aZ. [ 3 ]  using another simple hard-core pseudopotential previously introduced 
by SPRINGETT et al. [8] does not compare well with the experimental data either. In that 
case, the theoretical curve describing the variation of the ground-state energy with density 
is monotonic without any minimum. 

We suspected that some of the above problems could derive from the rather primitive 
pseudopotentials used to simulate the neutral argon atoms in the previous work, and 
decided to perform a new calculation of Vo(n> in liquid argon, using recently developed, 
norm-conserving pseudopotentials [9], which describe well the core part of the atom. These 
pseudopotentials are first-principles ones, in that they are derived from all-electron, local 
density-functional atomic calculations. In the local density-functional approximation [lo], 
the ground-state energy of a system of interacting electrons in an external (nuclear) 
potential is expressed as a functional of the electron density F(r) 

E(p) = TCa) + E ~ ~ ~ 4 . p )  +/VextW p(r) dr  + E,&) , (1) 

where T(p) is the kinetic energy of the noninteracting electrons, 

is the usual electrostatic Coulomb energy of the electrons, 

is the nuclear potential (2 being the nuclear charge), and E,,@) is the exchange-correlation 
energy. In the construction of nom-conserving pseudopotentials for the periodic table, the 
Ceperley-Alder results for the homogeneous electron gas [ll, 121 were adopted for the 
exchange-correlation energy, and smooth, nonlocal (Z-dependent) bare-ion pseudopotentials 
were extracted from the full-core atomic calculations. Once these bare-ion potentials are 
self-consistently screened by their valence electrons, they yield identical valence eigen- 
values and nodeless valence wave functions which exactly agree with the full-atom ones 
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outside the core region [9]. Most relevant t o  our task is the related ability of these potentials 
t o  reproduce the scattering properties of the full-core atom over a wide energy range around 
the valence eigenvalues (-20 eV, typically) [9]. In addition to the tabulation of bare-ion 
potentials, a fit to neutral-ion, screened pseudopotentials was also obtained [131 in the 
following parametrized form: 

6 3 

Vbs(r) = Aiexp [- ai?] + (BI + ?Bilt3) exp [-pi?]. (4) 
i = l  i = l  

Roughly speaking, the first term in eq. (4) describes the screened Coulomb potential and the 
second one the short-range, angular-momentum-dependent part related to the 
orthogonality to the inner core. The parameters Ai, Bf, ai, and p: (in atomic units), 
describing the neutral-argon pseudopotential for Z=O,  are listed in table I. 

TABLE I. -List of the 1 = 0 neutral-argon pseudopotential parameters (in atomic units) used in eq. (4). 

Ai ai Bi Pi 
- 406.606 649 7 

- 5602.331 795 8 

- 2642.854 755 5 
- 4.418327 1 

2641.300 757 4 

6000.089 283 2 

0.70 
0.84 
0.95 
1.06 
1.13 
3.15 

- 41 516.481 283 2 
27 994.623 884 0 
13 544.887 928 4 
8 595.351 284 1 

26 122.872 231 5 
3 945.668 725 3 

4.67 
5.28 
6.26 
4.67 
5.28 
6.26 

Since the aim of our work was to accurately describe an excess electron in liquid argon, it 
seemed reasonable to us to smoothly match to the neutral-argon pseudopotential a 
polarization tail just described in the form 

using ro and v as adjustable parameters i) to optimize the fit to the gas-phase, low-energy 
electron-argon total scattering cross-section data, and ii) to maintain the smoothness of our 
single-atom pseudopotential Vk=Vbs+ Vpol in the sewing region of the two terms. This 
correction is necessary because the local density approximation for exchange and correlation 
does not give the correct long-range behaviour of neutral atomic potentials. The way we 
introduce it, on the other hand, is such that this empirical correction does not spoil the 
quality of the core part of the potential, since our polarizability tail takes off quite far from 
the core region. ro and q used in the present calculations were equal to 3.90 a.u. and 3.95, 
respectively. 

Using Vtl=O and the atomic polarizability a = l l  a.u. for the argon atom[14], the 
calculated scattering length related t o  the zero-energy cross-section was found to be equal 
to -1.4 a.u., which agreed well with that obtained recently from experiment 
(- 1.45 k 0.02 a.u.) [15]. 

In order to  find the effective potential acting on the excess electron in the liquid, we 
followed the method given by LEKNER [5].  The potential is calculated within the muffin-tin 
approximation and is taken to be the superposition of the single-site potentials inside each 
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muffin-tin sphere and as zero outside, namely 

In view of the facts that i) the excess electron in the bottom of the conduction band is of 
purely s character and ii) the contribution from nearest and farther neighbours to  the central 
cell potential comes from potential tails which are the same for all angular momenta, it 
seemed reasonable to use just the s-potential in eq. (6). U. is the value of the first maximum 
of the first two terms in eq. (6) (corresponding to the fact that the electron only sees 
differences in the potential), which occurs at the muffin-tin radius r,. r, and U. are thus 
fixed simultaneously here. The Lorentz screening function, which approximately includes 
the effect of induced atomic polarization when the electron is between the atoms, was 
calculated self-consistently according to the following formula [51: 

0 lr--s 

where 

s is the distance between two atoms, r and t a r e  the distances of these two atoms from the 
electron, g(s) is the pair correlation function given by 

m 

g(s) = 1 + - 1 [ S ( k )  - 11 sin (ks )k  dk , 
2 2  ns 

0 

(9) 

and S ( k )  is the structure factor calculated according to the theory given by ASHCROFT and 
L E K N E R [ ~ ~ ] .  In the calculation, Lekner's hard-core diameter was taken to be equal to 
3.44 [51. 

In the Wigner-Seitz approximation, the ground-state energy of an excess electron is the 
energy at  which the s-wave single-site radial wave function has zero derivative at the 
Wigner-Seitz radius r,, which is defined by the relation 

rs = (&T. 
At all densities considered in the present work, we have r, > r,. Consequently, the s-wave 
radial wave function in this case may be written as 

where ( a )  is the scattering length, obtained from the numerical integration of the Z = 0 
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w l  

Schrodinger equation for UeS. Then ko may be calculated by solving the equation 

-0.6 

In fig. 1, we show the results of our  calculation for the ground-state energy 
Vo = h2 k$2mo + U. of an excess electron in liquid argon as a function of liquid density in the 
range (0.001 +- 0.021) The effective electron mass at the bottom of the conduction band 
was assumed to be equal to the free-electron mass mo. The solid curve b)  of fig. 1 represents 
our theoretical results, while the broken line e )  is a fit to the experimental data of Reininger 
et al. [31. The various symbols shown in fig. 1 give the experimental results obtained by 
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Fig. 1. - Density dependence of the conduction band energy VO in liquid argon: a) theoretical results 
obtained by BASAK and COHEN in ref. [4]; b) present work; c) smooth curve representing the 
experimental data (a) by REININGER et al. (ref. [3]); d )  theoretical results obtained by REININGER et 
al. (ref. [31) using the simple pseudopotential model proposed by SPRINGETT et al. (ref. [81) with a 
constant hard-core radius of 0.918 A. The experimental results of Vo(n) obtained at certain densities 
by other authors are also presented in the figure: MESSING and JORTNER (ref. [17]); A TAUCHERT et 
al. (ref. [181); v VON ZDROJEWSKI et al. (ref. [19]); A ALLEN and SCHMIDT (ref. [ZO]); 0 HALPERN et al. 
(ref. [21]). 

different authors [17-211 as listed in ref. [3]. As we can see, our calculated Vo(n) curve 
compares well with experiment. In particular, a minimum of Vo(n) is found at a density equal 
to 0.012 which is in excellent agreement with the experimental results. The 
discrepancies existing between the calculated and experimental Vo(n) curves are observed to 
be much smaller than those resulting from Basak and Cohen [4] or Reininger et al. [31 
calculations. For the sake of comparison, we have also shown in fig. 1 the Vo(n> curves 
calculated by these authors (curves a)  and d)). 
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In conclusion, we would like to emphasize the importance of using a potential which 
adequately describes the core region of the atom. The simple calculation presented here, 
which differs from previous ones for a more accurate pseudopotential, is enough to yield a 
dependence of the quasi-free-electron energy V, on the density n in much closer agreement 
with measured data. 
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