
IEEE Transactions on Nuclear Science, Vol. NS-26, No. 2, April 1979
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ABSTRACT

Basic concepts of electrode geometry and signal
processing for a time projection liquid argon ioniza-
tion chamber are introduced. The design criteria of a
system of sensing electrodes are discussed. The sig-
nals induced by rectilinear particle tracks on the
sensing electrodes are calculated by means of a detail-
ed study of possible electric field configurations.
Suitable signal processing filters are designed in
order to achieve nearly equal position resolution in
the three space coordinates. The electronic noise lim-
its the position resolution of a single track to a few
tenths of a millimeter and the capability to resolve
and measure closely spaced multiple tracks to a few
millimeters.
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LIST OF SYMBOLS

A area of F(t) [volt sec]

A0 area of F (t) [volt sec]

Ar area of Fr0(t) volt sec]

Aro area of Fro(t) [volt sec]
C capacitance of a sensing wire plus input capac-

itance of the associated amplifier

Cw capacitance between a sensing wire and a
neighboring one
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Ck capacitance between a sensing wire and a
sensing wire of the other plane

D diffusion coefficient

d ionization density of a track

Eas asymptotic field

e2 unilateral (physical) noise spectral density

n [V2/Hz]
F(t) voltage waveform induced by a track [volt]

F0(t) voltage waveform induced by a track parallel
to the grid planes

Fr(t) voltage waveform induced by a track when the
reference induced charge waveform fr(h,t) is
used

Fro(t) voltage waveform induced by a track parallel
to the grid planes when the reference induced
charge waveform fr(h,t) is used

f(h,t) induced charge waveform on a sensing wire due
to a unit charge starting at distance h from
the considered wire (see Fig. 2.7)

fr(hst) reference induced charge waveform (Fig. 5.2)

G spacing between grid planes

g(t) filter's 6-response

H(s) filter transfer function

h distance of a point charge from the center
of a sensing wire in the y direction

L r.m.s. width of F(t)

Lo r.m.s. width of FO(t)
L r.m.s. width contribution due to the incli-
s nation of the track

m normalized peak amplitude of the filter

m' dimensionless peak amplitude of the filter

N(q) cumulative probability density for tracks
giving rise to input current pulses with a
normalized charge lower than q

N(X) cumulative probability density for tracks
giving rise to input current pulses with a
normalized width lower than X

n normalized slope of the filter

n' dimensionless slope of the filter

p weighting coefficient for the effective
Green function
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Q2w charge of the "input current pulse"

QO Q = 2dw charge of the "input current pulse"
f8or e = cp =TT/2, i.e., track perpendicular
to the wires

q q - Q2w/Q0 normalized charge of an input
pulse

R wire radius

S zero crossing slope of W(t)

T width of the rectangular "input current pulse"

TD width at the base of the reference waveform
fr(hst)

TM total width of a filter's 6-response

Tr time necessary for an electron to travel a

t
0

t
c

u

VA

aisuance9o 9 w

zero crossing time of the waveform W(t)

centroid of F(t)

saturated drift velocity of electrons

anode potential; (VA = 0, anode plane
simulates second sensing grid array)

first sensing grid potential

screen grid potential

Vs

VG
W(t) filter's output waveform response to F(t)

Wr(t) filter's output waveform response to F r(t)

Wmax peak value of W(t)

w wire spacing

Z r.m.s. noise to peak signal ratio

a a= A/A = A0/A
R R = ~~TD/L0
g C = ~~T/L8

x x = T/Tr normalized width of an input pulse

e2 mean squared voltage noiseN

e12 timing variancet

e2' space resolution variance
x

e ,cp polar angular coordinates of a track

Subscripts 1 and 2 refer to the first
and the second filter, respectively.

1. Introduction

The purpose of the imaging device under consider-
ation is the reconstruction by electrical signals of
the geometry of a high energy event taking place in the
sensitive volume of a time projection liquid argon ion-
ization chamber. The idea consists of drifting the

whole electron image of an event occurring in liquified
noble gas onto an array of sensing electrodes, which
are arranged so that the three-dimensional image of the
event can be reconstructed from the two coordinates of
the image projection in the electrode plane and from
the drift time.

The idea has evolved as follows. In 1969, Charpak
et al. 1 showed that the three coordinates of primary
ionization in a gas drift chamber can be determined from
the electron drift time to an anode and from the two
coordinates of the avalanche in the anode plane, and
they suggested 2 three dimensional (avalanche) chamber.
In 1974, Nygren proposed the time projection chamber
(TPC) based on these principles, in which the recon-
struction of multiprong events and their identification
from the energy loss (AE/LX) in gas can be performed.
In 1975, W. J. Willis suggested to one of the authors
(V. R.) the idea of the time projection chamber in
liquified noble gases which led to the developments
described in this paper. In 1977, Rubbia3 described
some basic features of a liquid argon time projection
chamber.

There is a significant difference in the signal
size between the chamber using amplification in gas
and the chamber with liquified noble gas, where ampli-
fication has not proved practical and the signals pro-
duced by the primary ionization have to be detected.
The problem of obtaining maximum information for parti-
cle track reconstruction from the small amounts of
ionization in the chamber is the main subject of this
paper. The basic concepts of optimum electrode geometry
and signal processing for time projection ionization
chambers are introduced here.

The realization of such a chamber depends on the
ability to drift electrons in liquid argon over long
distances. Encouraging results have been obtained by
Chen et al.4

The dimensions of the ionization chamber are set
by the nature of the application and the attainable
drift distance. For use as a vertex detector for high
energy physics experiments, the approximate dimensions
should be 20 x 20 x 50 cm, with the incident beam along
the largest dimension, and the expected resolution for
minimum ionizing particle of a fraction of a millimeter.
For a large volume detector, as for neutrino experiments,
the cross section should be several square meters, and
the drift distance as long as allowed by electron at-
tachment and a practical drift field. In this case,
resolution would be several millimeters.

As an example with strong requirements on resolution,
we consider here an ionization chamber having dimensions
20 x 20 x 50 cm (last dimension taken parallel to the
primary beam). The electrons, produced by and defining
the pattern of the event, drift in a uniform electric
field and are sensed as induced charge by a system of
wires placed beyond a screen grid. The wires sensing
the signals give, by their own position, two coordinates
perpendicular to the electric field while the timing of
the signals gives information about the coordinate par-
allel to the drift field.

A solution with a point array of sensing electrodes
has been disregarded because it would imply an unaccept-
ably large number of high quality amplifiers and electrode
connections of the order of 200 x 200 for the required
resolution. Alternatively, sensing electrodes consisting
of two crossed sets of parallel wires lying in parallel
planes will be considered here. With a wire spacing of
1 mm, this solution implies the use of (200 + 200)
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amplifiers. One is faced, however, with the well known
problem of ghost events when the coordinates of more
than one electrode intersection have to be recorded
simultaneously, and this will happen frequently for the
ionization chamber under consideration. The problem is
generally solved (for a limited amount of multiplicity)
with a third layer of wires inclined with respect to the
other two sets. However, if the chamber is used to image
multiparticle jets radiating from a narrow primary beam,
and if the ionization pattern is made to drift in a
direction parallel to the beam, then a better geometry
(at least for not too large track curvature) for the
third set of sensing electrodes might be circular sec-
tors as shown in Fig. 1.1, or a rough checkerboard of
about one hundred electrodes.

In spite of the fact that hydrogen is often a more
interesting target, this first design is based on argon
for two reasons:

the larger ionization density for
particles at minimum of ionization
(8000 pairs/mm);

the experience with liquid argon
ionization chambers existing at
Brookhaven National Laboratory and
CERN.

For this liquid the saturated electron velocity u
is about 5 x 103 m/s for an electric field larger than
200 volt/mm, or 100 kV for a chamber 50 cm long. Maxi-
mum drift time will be about 100 ps. This is quite
large and imposes severe restrictions on event rate, in
order to have no more than one ionization pattern at a
time present in the chamber on the average.

Drifting in a direction perpendicular to the pri-
mary beam could also be considered and, of course, max-
imum drift time would be reduced to 40 [As and total
voltage to 40 kV. (In this case, the third group of
sensing electrodes would be parallel wires.)

Resolution of the chamber will also be limited by
diffusion. Inserting into the Einstein relationship an
electron energy of 0.1 eV for E = 2 x P05 volt/m as a

rough estimate, and taking i = 4 x 10 m2/volt2s, we

estimate a diffusion coefficient D = 4 x 10-3 m /s and
a standard deviation of 0.6 mm after 100 ps drift
time. Of course, this figure has to be considered only
as an order of magnitude estimate. A better evaluation
needs experimental values for longitudinal and trans-
versal diffusion as a function of the electric field
and impurities.

Electron drift for lengths up to 35 cm in liqu4d
argon has been already experimentally demonstrated.

As the three cascaded sets of sensing electrodes
are provided, the first two must not collect the drift-
ing electrons but merely sense the signals as induced
charges. The proposed geometry is shown in Fig. 1.2.
(The last set of sensing electrodes in the form of
circular sectors is not shown.) Wire spacing w, wire
radius R, and spacing G between grid planes are chosen
according to considerations presented in this paper.

In order to estimate the resolution capability of
the device, we consider here the simplest case, that is
the one of a rectilinear track of uniform density d
(Landau fluctuations are neglected) with a given orien-
tation e, cp in space. We have calculated the accuracy
of the timing information available from the signal

induced on a sensing wire by the relevant portion of
the track drifting through the screen grid and passing
in the vicinity of the sensing wire. (The problem of
measuring the ends of tracks or processing of peculiar
signals due to the ionization first formed beyond the
screen grid is not considered here.)

The electrostatic problem has been studied to cal-
culate the electric field and the corresponding electron
trajectories for a given geometry. The necessary condi-
tions are that the electron trajectories should not fall
on the grid wires and that nearly all electrons move at
the saturation velocity. The induction weighting function,
that is the harmonic Green function equal to 1 at the
sensing wire considered and 0 at all other electrodes,
has been used to calculate the charge pulse induced at
the wire from the known laws of electrons of motion along
their trajectory.

To design the most suitable filters to be used in
connection with charge sensitive low noise amplifiers,
idealized reference waveforms for the charge pulse have
been introduced as a rough approximation to the exact
ones. Focusing of the screen grid has been neglected
and a weighting function of triangular shape, linearly
decreasing in amplitude with the distance h from the
sensing wire, has been assumed. (Compare Fig. 5.1 with
Fig. 2.6(b) and Fig. 6.2 with Figs. 2.9(a) and (b)).

This paper, while studying in detail the signals
from a point of view of the time and position information
which can be extracted, does not enter into the problems
of digital processing and the organization of the large
amount of information arising from the sensing wires in
order to reconstruct the ionization patterns.

2. Potential and Field, Induced Pulse Shape.
and Electrode Capacitances

In order to study induced charge pulses we have to
find for the considered geometry and the assigned potential
values at the electrodes: i) the lines of the electric
field in the chamber from which the law of motion of the
inducing charge may be derived; ii) the weighting Green
function of the sensing wire which allows us to calculate
the induced charge as a function of the position of the
inducing charges.

The electric field and all related parameters of the
chamber have been computed with reference to the idealized
geometry shown in Fig. 2.1. Both the screen grid and the
first sensing grid have been assumed to consist of an in-
finite number of straight wires of infinite length and
given radius. The second sensing wire array, perpendicular
to the first one, is approximated by a plane anode. With
these assumptions we are led to a periodic problem in two
dimensions which can be dealt with by means of the complex
potential formalism. This method has the advantage of
providing both the potential function and the field line
function we need in order to calculate the trajectories
of the electrons under the assumed condition of saturated
velocity.

The analytical solution of the electrostatic problem
of an infinite array of uniformly gharged lines with equal
spacing was found by J. C. Maxwell by means of the log-
arithmic conformal mapping of the potential of a single
uniformly charged line (see also Refs. (6),(7)). To
match the boundary conditions imposed by the finite radius
of the circular wires we have considered two additional
terms in the multipole expansion of the potential, i.e.,
a dipole and a quadrupole placed at the position of the
line and with orientation dictated by symmetry. By
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applying the conformal mapping to these contributions,
too, we obtain all the contributions to the complex
potential which are respectively for charge, dipole and
quadrupole

Vc ' aC k fl/[cosh(s-xo) -1]}

VD = aD[sinh(s-xO) -1]/[cosh(s-xo) -1]3 (2.1)

VQ = aQ l/[cosh(s-xo) -13

where a = x + iy, xo is the distance of the grid plane
from the origin and the a's are coefficients to be
determined.

To assure a constant potential at the anode plane,
(for convenience we choose this constant potential VA
equal to zero) we assume it as a symmetry plane and
introduce mirror multipole contributions. They are
directly obtained from the above relations by changing
xo into -xo, aC into -aC, aQ into -aQ while aD remains
unchanged. Obviously, the total complex potential must
include contributions due to the sensing grid and the
screen grid which correspond to terms with xo = G and
xo = 2G, respectively.

Furthermore, a linear term

V = a sL L (2.2)

must also be added to account for the uniform asymptotic
field Eas in the chamber.

To calculate the influence coefficients needed to
determine the unknowns, we must fix a number of points
(equal to the number of the a's) where the value of the
potential is assigned and chosen in such a way to pro-
vide a solution for the potential which gives satis-
factory approximation to the circular shape of the wires
(see Fig. 2.2). The field configuration is then obtain-
ed by solving the linear system for the a's once the
values of the potential at the electrodes are given.
The field lines and associated potential distribution
are shown in Figs. 2.3 and 2.4 for two different sets
of potentials (a) and (b) given to the chamber elec-
trodes. In both cases the screen grid has such a po-
tential as not to collect electrons (or field lines
coming from the cathode). In the case (a) the sensing
grid is placed at the geometrical potential and does not
distort appreciably the above mentioned field lines
which have been focused by the screen grid in the cen-
tral zone between the adjacent sensing wires. As it
may be expected, this situation, apparent in Fig. 2.3,
is characterized by a shrinkage factor of the field
lines equal to the ratio of the asymptotic electric
fields downstream and upstream the screen grid.

On the contrary, in case (b) the potential of the
sensing grid is so chosen as to counterbalance the
focusing action of the screen grid, i.e., the field
lines focused in the central region by the screen grid
are defocused by the sensing grid so that the initial
uniform distribution is restored (see Fig. 2.4). In
this case the third grid (second sensing grid with wires
orthogonal to the ones of the first two grids) would not
be affected, as far as the z, y coordinates are concern-
ed, by the pattern deformation due to the focusing ef-
fect of the screen grid.

Moreover, this second case has the advantage of
restoring the electric field after the first sensing
grid to the value Eas present in the drift space of the
ionization chamber. If the second sensing grid must not
capture electrons, it is sufficient to double the elec-
tric field Eas in the region between this grid and the
anode (4th set of electrodes).

Let us now consider the problem of calculating the
Green function V of a signal wire of the sensing grid.
This means to solve the potential problem with the fol-
lowing Dirichlet boundary conditions: potential equal to
1 at the chosen sensing wire and equal to zero at all the
remaining boundaries. Since these boundary conditions
are not periodic in y-direction, we must resort to direct
summation of multipole contributions coming from a large
number of distinct wires. In practice, we have found a
satisfactory representation of the circular shape of the
sensing and screen wires in the region of interest by
taking into account for each wire a number of multipole
terms dependent on its position with respect to the
sensing wire. For the central wire we have considered
the charge term and the dipole and quadrupole terms with
orientation dictated by the symmetry of the problem,

V1 =b1~la{l/[(x-xo)2 + Y2] }

V2 = b2(X-X )/[(x-xo) + y 3 (2.3)

V3 b3[(x-x0)2_ y2/][(x-x)2 + y22

For the wire adjacent to the central one we have consider-
ed the charge term, two perpendicular dipole terms, and
a quadrupole term whose orientation has been chosen to
approximate the true one.

V4 = b42nk {l/[(x-xo)2 + (y-w)2V4 = b 4 _w) ] ~~~I
V5 = b5(x-xo)/[(x-xo) + (y-w) 3

vnb ~~2 2V6 b6(y-w)/[(x-xo) + (y-w) I

2 2 2 2 2
V7 = b7[(x-xO) - (y-w) ]/[(x-xo) + (y-w) 3 -

For the next 9 lateral wires we have taken into account
only the charge terms

V4 = b n Tl/[(x-x.)2 + (y-(4-b)w)2]kl

t = 8,9 . . . . ,16 0

(2.5)

The expressions (2.4) and (2.5) refer only to the wires
placed on one side of the symmetry plane y = 0 so that
the corresponding expressions for the contributions
coming from the wires placed on the other side must also
be included. They are obtained from changing w into - w
and reversing the sign of the y-oriented dipole contri-
bution.

Again, the vanishing of the potential at the anode
plate requires to include mirror contributions. This is
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easily performed by using the above relations with xo
changed into -xo and bp changed into -b for all t dif-
ferent from 2 and 5. Finally, the contribution coming
from the two grids must be considered. This is easily
done by taking the above expressions with xo = G for the
sensing grid and with xo = 2G for the screen grid.

As for the 32 boundary points, to impose the as-
signed boundary values of the Green function, we have
relied upon the choice shown in Fig. 2.5 which gives an
accurate description of the circular shape of the wires
in the region where the Green function differs signif-
icantly from zero. A plot of the calculated Green func-
tion is given in Fig. 2.6(a).

As the Green function spreads too much in y direc-
tion leading to a poor spatial resolution along this
coordinate, a better space behavior can be obtained by
an "effective Green function". This is given by the
following linear combination of Green functions of the
three neighboring wires,

If the track is parallel to the screen grid plane
(8= TT/2) and has an angle cp / TT/2 with respect to the
screen wires, (Fig. 3.2) we have

Q2w = 2td = 2wd
I sincpl

T = 0

Finally, if the track has
Fig. 3.3, then

Q2w = 2td = s

Qo
sinCpl sineI

Qo

sincpl
(3.2)

direction 8 and cp as shown in

2wd

I.sincpl I sin8|
(3.3)

V(x,y) + p[V(x,y+w) + V(xsy-w)] (2.6)

where the weight p has been chosen equal to -0.3 (see
Fig. 2.6(b)).

The induced charge waveform f(h,t) due to a unit
charge starting to move at a given h (Fig. 2.7) is
obtained by following with constant velocity the in-
volved field line through the sensing region to the
anode, and by evaluating at each time the induced charge
by means of the values of the effective Green function
at the corresponding point. The result is shown in
Figs. 2.8(a) and (b). The total charge pulse due to an
infinite track of uniform ionization density is obtained
by superposition of the calculated contributions, taking
into account for inclined tracks the proper time dis-
placement of the contributions (Figs. 2.9(a) and (b)).

The electrostatic calculations for obtaining the
Green function lead automatically to the evaluation of
the equivalent capacitances of the sensing wires which
are given in Fig. 8.1 for an assumed length of 20 cm.

3. "'Input Current Pulse"

Let us introduce the concept of an "input current
pulse", due to a rectilinear track direction 0 and cp
(see Fig. 1.2) for a definite sensing wire. We define
this input current pulse as the current which would be
produced by the electrons of the rectilinear track cros-
sing a reference width 2w of the screen surface, just
above the sensing wire under consideration, if the elec-
tric drifting field were uniform (the focusing effect of
the screen grid and contributions of electrons crossing
the grid on either side of the reference surface of width
2w will be taken into account separately).

By definition, the "input current pulses" are rec-

tangular and may be defined by their total charge
T

Q2w J i dt and by their width T.

Q2w and T are calculated by the following geomet-
rical considerations.

Consider as a reference case the one in which the
track is parallel to the screen grid plane but perpen-
dicular with respect to its wires (Fig. 3.1). In this
case (e = p = 1T/2)

Q2w = QO = 2w . d

T = 0 -

T =
n =2 !jcoseI = 2w l
u u u I sincptgi

(3.4)
Tr

sinrptgej

where reference time Tr = 2w/u is the time necessary
for an electron to travel a distance 2w.

4. Probability Densities of Input Pulses
Having Given "Input Charge Q2w" and

"Input Current Pulse Width T"

It is now useful to calculate the probability
densities of getting "input pulses" of normalized charge
q = Q2w/Qo and of normalized width X = T/Tr under the
simple hypothesis of tracks isotropically distributed
in space. This leads to a track density per unit solid
angle equal to l/45.

In order to calculate the fraction of tracks which
give rise to a normalized charge lower than q, it is
sufficient to calculate the cumulative probability func-
tion N(q), which is given by the integral,

N (q) = 1I q

iSq
sindedcp ,

where S is the domain (m,e) for
Eq. (31), (see Fig. 4.1),

(4.1)

which, recalling

1 < q

sine II sincpl
(4.2)

Since cp,e and q are related by Eq. (3.3), we can write

dcp = dsin1 (l/qsine) = -1/sine (L )dq
(l-(l/qsine) )

(4.3)

and (4.2) becomes

(3.1)
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q TT/2
l 1I rF 1 delN(q) = Z7T - dq 2 j -1
4 '1q2 sin (-) (l-(l/qsine)2) sinO

(4.4)

Integrating (4.4) we obtain the function, shown in
Fig. 4.2,

N(q) = ,q 2 ,(4.5)q
and the density distribution function turns out to
be

dN(q) 1

dq q2
(4.6)

We proceed in a similar way to evaluate the cumu-
lative probability function N(X),

I

f(hlt +
h 1^ l)

d
_ dh

c u ~~Isincptg8e sincpsine
(5. 2)

and the total voltage pulse induced by such a track will
be

+x

F(t) = f(h,t + h sn g d dh
co C | sincptg6 | | sincpsin8l

(5.3)

Recalling from Eqs. (3.4) and (3.3) the width T of
the "input pulse" and its total charge Q2w' we can write

Q2w r TF(t) = 2wC j f(h,
Th

+ t) dh
_ac

2 (5.4)

N(X) 4TT j sinededcp

Sx
(4.7)

where SX is the domain (cp,e) for which s1n x
| sincptg8 |

(Fig. 4.3). We obtain the cumulative probability
function,

N(X) = tg , x , (4.8)

plotted in Fig. 4.4.

The density distribution with respect to the width
is consequently,

dN(X) = 2 1 . (4.9)
dX r 1 + X2

By symmetry considerations we have

f(h,t) = f(-h,t) = f(|h|,t)

so that Eq. (5.4) can be written

+x0

F(t) = Q2w f(lhl, Th + t) dhC J
-(jhj_co

(5.5)

(5.6)

From this we can state that the centroid of F(t) is
independent of T, that is of the direction e,p of the
track. The elementary contributions f(lhl, Th/2w + t)dh
in Eq. (5.6) can be associated in pairs at h and -h.
These pairs represent two equal pulses, the one advanced
in time by Th/2w, the other delayed by the same amount.
Obviously, the centroid position of this pair is in-
dependent of the magnitude of these time displacements,
and thus it is the true centroid of the whole pulse F(t)
independent of T.

5. Voltage Pulse Induced by a Rectilinear Track

The mathematical operation leading to the effective
Green function corresponds simply to constructing the
pulse for a given wire not only by means of the output
of its amplifier, but adding in a summing amplifier the
pulses of the amplifiers connected to the two adjacent
wires with a weight of -0.3.

We shall now consider the induced voltage pulse
obtained from the summing amplifiers associated with
each sensing wire. We start from the knowledge of the
above defined "input pulse" and from the voltage wave-
form induced by unit point charge starting at a distance
h from the sensing wire in the y direction (Fig. 2.7)
and at a given large distance above the screen grid.
As defined in section 2, this induced voltage waveform
is given by

If (h, t)

where C is the capacitance of a wire and the associated
input amplifier. Now we shall study the shape (through
a shape parameter) and the area of the total voltage
pulse induced by a charge track.

A track element, having direction e,c,, and cross-
ing the x axis in x, will induce a voltage pulse

For convenience, we now redefine the f(h,t) so that
the centroid of the whole F(t) be at t - 0.

We now calculate the rms width L of F(t),
2 o

t2F(t)dt
2 -w

L =

(5.7)

J
- co

F(t)dt

By using Eq. (5.6) and the Steiner theorem, Eq. (5.7)
can be written in the form,

+x +o +co

2 dhLJ t2f(lh ,t)dt + f(l ,t) T22 dt]

L =
+n0

J dt
c

dh f(lhI,t)
(5.8)

Finally,

2 2 T2h2 2 2L = L + L + Lw hr2 o s

where

(5.9)
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+co +00

_j00h2dh jf(|hl,t)dt
h = +0, +cc

3 dh j f(IhI,t)dt
_co _00

C - 3.8. Equation (5.9) now becomes,

(5.10) 2 2
2 TD T2

L 2 - 2

+00 +c0
r dt t2 ,:f(lh|,t)dh

_co _c00

+00 r.00

Jdt J f(|hl,t)dh
_O0 _00

r t2 F (t)dt
co

+00

000o(

L is the quadratic width of the shortest pulse F
arising from a track parallel to the screen grid
and orthogonal to sensing wires (e - cp - XT/2). T
we have proved that the r.m.s. width of F(t) is d
mined by the usual rule of quadratic addition of
r.m.s. width T of the input pulse and the r.m.s.

L, of the ionization chamber response Fn(t).

The resolution in y direction using the "effective Green

function" is shown in Fig. 5.2(a), where the partial

contributions to the pulse on the considered sensing

wire induced by equal charge elements starting at dif-

ferent distance h from it are plotted. In Fig. 5.2(b)
the same distribution is plotted for comparison when

using the true Green function. The great improvement

(5.11) in y resolution obtained with the effective Green function

is apparent. It has been achieved, however, at the cost

of reduction in pulse amplitude.

I(t),"
plane For the following discussion we shall need the areaplan

A of F(t),.1t 0

leter-
the
width

Go=F(t)dt Q C(2w Q2w

A=jF F(t)dt= FO(t)dt=- -A

..00 Qo K00 Qo 0

(5.18)

We shall compare the results obtained by calcu-
lating the actual waveforms with an approximate re-
ference pulse fr(h,t) of triangular shape of total
width TD = 2G/u, and its amplitude decreasing linearly
from 1 to 0 when h spans the interval 0 to w (see Fig.
5.1) given by,

f (h,t) = (,- jl)(1_11_ T ) -w . h w,r wljj)lj-TD'
0 9 t TD

(5.12)

We note that the width TD is connected to the re-
ference time Tr by,

Tr
TD G

The true area AO can be related to the area QoTD/4C =

Aro of the global reference pulse Fro(t),

Fro(t) 2 fr(IhI,t)dh ,
-w

(5. 19)

by a dimensionless coefficient (X,

Ao

Aro
(5.20)

Thus,

+00 +00

2 I"((5.13) a - T2 dh f(|h|,t)dt
D -CO

We can relate the r.m.s. width Lo to the nbminal
width TD of the reference pulse fr(h,t) with a dimen-
sionless coefficient

TD PLo a (5.14)

(5. 21)

and, for calculated cases (a), (b) of Section 2,

a =0.36 0

For the reference triangular pulse Or = A/3' 4.898,

while for the calculated geometry and potentials (a),
(b) of section 2, Fo(t) is shown in Fig. 2.9 and in
both cases 0 = 4.02. Similarly, we can relate the
r.m.s. width Ls to the nominal width T of the input
current pulse with a dimensionless coefficient writing

T = Ls . (5.15)

Recalling Eq. (5.10),

g 2w (5.16)

where fZis a measure of the resolution of the pro-
jection chamber in the y direction. For the reference
pulse fr(h,t) gr - v&4 4.898, while for the calculated
f(h,t), in the case (a) g - 3.6 and in the case (b)

It turns out that as far as the induced pulse is con-

cerned, the potential distributions of the cases (a) and
(b) give nearly the same results. However, case (b)
gives the advantage of recovering the initial geometry
of the track by a defocusing effect of the first sensing
grid neglecting the time distortion due to the electrons
which have passed in low field zones near the saddle
points.

Also, case (a) introduces delays in the electrons
passing near the saddle point at the screen grid. Case
(b) adds to this a delay due to the saddle point at the
sensing grid. These effects are too small to be seen

on the overall pulse but can be seen in the partial re-

sponses f(h,t) of Figs. 2.8(a) and (b). These effects
are underestimated because in our calculations we have
taken into account only the longer path of the electrons
involved, while in reality the reduced velocity of the
electrons not traveling always in the saturated region
will also play a role.

2916

and

2

0

(5. 17)

Authorized licensed use limited to: Princeton University. Downloaded on December 11, 2008 at 21:18 from IEEE Xplore.  Restrictions apply.



6. Pulse Shaping Filters

In the preceding section we have recognized the
centroid property of the voltage pulse F(t) as faith-
fully giving the x coordinate of the track segment cor-
responding to the y coordinate of the wire, independent-
ly of the track direction. We now search for a filter
capable of determining the centroid of F(t).

Attention is focused here on sensing the presence
of the pulse and on the timing, rather than on measuring
very accurately its amplitude or area. The response
g(t) of such a filter is,

suitably shifted in time, according to the length T of
the "input current pulse" which is related to the track
direction.

(6.7)r TDT _T/2 T/2 T

*{l(t+r)-l(t+T-TD)} dT¶

where

Q2w Ar
C TD

'

g(t) = T t (t)-l(t-Tm) (6.1)

and it is shown in Fig. 6.1. The filter, when driven
by F(t), gives an output pulse

+x0

W(t) = T ( -t + T' l(t-T)-l(t-T-TM)j F(T)dT-TM 'j _ .
0

2 ~ ) ;_

(6.2)

The pulse W(t) crosses the zero line
which W(to) = 0), determined by,

t t

(to~-2J F(T)dT =t-21~to-TM t T

at a time to (for

T F(T)dT . (6.3)

Fr(t) turns out to be the convolution of two tri-
angular waveforms of width T and TD, respectively. The
resulting pulses are shown in Fig. 6.2, and can be
compared with the F(t) shown in Figs. 2.9(a) and (b).

The filter output Wlr(t) is given by theZ -l
transform of the product of the;C transform of Fr(t)
and the filter transfer function H1(s), which are re-

spectively,i
-s

64r eXFr(t)) = 6 e 2
D

sTD ST(cosh 2- _-l)(cosh -T(1),

(6.8)

and

H1(s) = 4 cosh- _ 8
2 T2

s inh 2M (6.9)

Solving for to we have

t0

t TM JtoTMto 2 t0
rr )U° F(T)dT

jto-

In Fig. 6.4, the calculated voltage waveform Wlr(t) is
shown for TM/TD = 1 and shifted in time so that the zero
crossing point is at t = 0.

(6.4)

(6.5)Tt= M + t
2 c

Let us now calculate the amplifier output noise.
The time scale of the filter response is in the range
of a few microseconds. Thus, only the series noise needs
to be considered. The mean square noise voltage referred
to the input is

Tm/2
2 n fl 4t2

el1N = 2 iTM/2 TM; dt =

2
en . 4
2 3 M (6. 10)

where t is the centroid of F(t), provided that F(t) is
zero before to - TM/2 and after to + TM/2. A zero cross-
ing detection of W(t) gives, therefore, a measurement of
the centroid of F(t) assuming the above restrictions on
the width of F(t) are satisfied.

The zero crossing slope S of W(t) is 4A/TM if A
[volt sec] is the area of F(t). This slope is inde-
pendent of the shape of F(t) as every element F(t) dt =
dA of the exciting pulse gives (because of the linear
shape of g(t) a contribution to the total slope 4/TM dA,
irrespective of the position of dA. In Fig. 6.3 the
normalized zero crossing slope is shown. It is also
given for pulses of width larger than TM for which the
preceding considerations are not valid, but for which
the filter does not give any timing error if F(t) is
symmetrical with respect to its centroid.

This shape-dependent slope is calculated with pulses
Fr(t) at the input of the considered filter. Fr(t) is
obtained by superposing the voltage contributions

Q2w fr(h, t) dh (6.6)

The timing variance is given by the square of the
ratio of the r.m.s. noise and the signal slope at zero
crossing,

e22 1N
lt s2

e2n
2

3
1 TM
12 A2 (6.11)

if T + TD < TM. When this last condition is not satisfied

2 3
2 en TM 1
lt 2 12 22TM T

A nl(T
D D

(6. 12)

where ni is the normalized slope plotted in Fig. 6.3.

Let us now evaluate the noise to signal ratio given
by this filter in order to recognize the presence of
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a track. The normalized peak amplitude ml as a func-
tion of the parameters TI./TD and T/TD of the calculated
Wlr(t) is plotted in Fig. 6.5.

The noise to signal ratio squared Z2 can be written

e2z2 en TM 1
1

'

2 12 22TM T

1 D TD

(6. 13)

We will now investigate the behavior of another
bipolar filter which does not produce any ballistic
deficit for short "input pulses", that is when T <
TM/2 - TD and would be the optimum filter for a tri-
angular pulse of width TM at its input. The filter
considered has a bipolar rectangular response as shown
in Fig. 6.6. This filter does not introduce systematic
zero crossing timing errors if the input pulses are
symmetrical. In Fig. 6.7, the calculated voltage wave-
forms W2r(t) for TM/TD - 1.5 are shown.

The mean square noise referred to the input is, in
this case,

22e2 n

2N 2 TM * (6.14)

In Fig. 6.8 the normalized slope n2 is shown. In
Fig. 6.9 the normalized peak amplitude m2 is given. The

reference slope 413/2 A/T and the reference amplitude
4/3/2 A have been chosen In order to be able to compare
the performance of the two filters by simply comparing
the n1 and ml values with the corresponding n2 and m2
values.

It should be noted that n2 increases when T becomes
smaller even in the region T < TM T , while n1 remains
constant, in this region. For this filter, the timing
variance is

2 T2

e2t 2 12 5' (6.15)

A n2ri
2(D TD

and the noise to signal ratio squared

2 e2 T
Z2 2

n M
2 2 12

1
T

A2m2 M T

D D

(6.16)

Equations (6.15) and (6.16) are formally identical to

Eqs. (6.12) and (6.13), respectively. In formulas
(6.12), (6.13), (6.15), (6.16), TD should be substituted
by Or/' TD and T by gr/9 T in order to approximate
better the true pulses with the reference ones. How-
ever, as a first order approach, only calculations and
design with the reference values will be dealt with.

We note that both filters are able to perform the
timing correctly on the tracks which generate input
pulses having width T much larger than TD. In fact,
the reference pulse at the input of the considered
filter is the convolution of a triangular waveform of
the fixed width TD with a triangular waveform of width
T, Eq. (6.7). When T >> TD, the reference pulse be-
comes again a triangular waveform. Then, both bipolar

filters acting as differentiators give as their output
a nearly bipolar rectangular waveform, where the zero
crossing gives the correct timing of the track.

7. Design Guidelines and Discussion
of the Results

Consider the expressions (6.12) or (6.15) and sub-
stitute for A the expression

QOTeIosDiA -
| sin@j4C

wdTDG
D

| sine | 2C

as given by Eqs. (5.18), (5.20), and (3.3) and assuming
cp - 90 , that is the worst case as far as the timing
resolution is concerned. We obtain for the timing
variance,

2 en TD TM3 4C2
t 2 12 TD a2

By substituting Eq. (3.4),

22- T TM 34 2

elt=2T.r (T ) 2 2 2
D a w d

1 sin2e
w2d2n T . (7.1)

D D

1 cos2(tan 1/x) .(7.2)
X n

Similarly, from Eqs. (6.13) and (6.16), we obtain for
the amplitude variance (noise to signal ratio squared)
at the output of the timing filter,

e2 2 T 2 -l2 en 1 4C M 1 cos2(tan 1/x)
z = _

12 12TD a2w2d2 TD x2 2 (7.3)

Relationships (7.2)2and (7.3 8are our main design
formulas. We assume: en = 3.10 volt2/Hz (for an
FET at room temperature); C = 20 pF, (10 pF for the in-
put FET and 10 pF for the sensing wire capacitance plus
stray capacitance) d = 1.28 x 10-12 Coulomb/m (8000 ion
pairs/mm); w = 10 m (thus assigning an order of magnitude
for the resolution in y direction);

T - 2w . 0.4 s;r u

a - 0.36;

T.
T 1, 1.5, 2 (tentative values).
D

As it is necessary to recognize the presence of
the pulses in order to be able to time them, TD will be
calculated from Eq. (7.3). We assume the maximum
permissible noise to signal ratio squared so that the
smallest pulses (T = °2 cp = TT/2) pan be unambiguously
detected. We choose Z = 2 x 10 , which means that
the signal amplitude is about seven times larger than
r.m.s. noise. The pertinent m (TM/TD,0) values are

determined from Figs. 6.5 and 6.9 for the two filters.

The resulting design parameters are shown in Table
I for the first filter and in Table II for the second
one.
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The TD values and the consequent gap dimension G
preclude recognition and timing of multiple tracks
separated by less than several millimeters in all con-
sidered cases in absence of more elaborate pulse pro-
cessing. The space resolution ex = u Et for the two
filters is plotted as a function of X = T/Tr in Figs.
7.1 and 7.2.

measurements (Figs. 7.3 and 7.4) is sufficient for
ionization loss (dE/dx) measurements, when this is re-
quired for particle identification. If this were not
the case, a separate filter optimized for amplitude
measurements would be necessary.

8. Preamplifier Considerations

The (amplitude) signal to noise ratio 1/Z for the
two filters is plotted in Figs. 7.3 and 7.4 as a func-
tion of X = T/Tr.

From these data a good choice appears to be filter
2 with TM/TD = 1.5, as it insures a spatial r.m.s.
resolution ix of 0.16 to 0.22 mm in the range X -0 to
10, with a total pulse width of 2.53 pisec for tracks
parallel to the grid plane.

Another equally favorable choice would be filter
1 with TM/T = 1, spatial r.m.s. resolution e = 0.17
to 0.23 mm in the range X = 0 to 10, with a total pulse
width of 2.38 [isec for tracks parallel to the grid
plane. The range of X (calculated for the worst case
of cp = 90 ) insures an accurate timing for more than 94%
of the tracks in the isotropic case.

Furthermore, a calculation of ex and 1/Z by using
the true pulses F(t) from Figs. 2.9(a) and (b), instead
of the reference ones F (t) shown in Fig. 6.2, would
give better timing resolution and higher signal ampli-
tude to noise ratios, for tracks not parallel to the
grid plane. This is due to the unexpected narrowing of
the F(t) peaks with increasing X. This arises due to
the peculiar shape of the f(y,t) waveforms (negative
minimum and two positive maxima) for a part of the range
of y values (Figs. 2.8(a) and 2.8(b)). With a choice
of a small value for TM/TD (; unity), filter 1 no longer
provides an accurate centroid measurement independently
of the signalaveform. As it has been noted earlier in
the paper, the centroid measurement is independent of
the signal waveform only for pulses shorter than TM.
The two filters are, therefore, equivalent in this
respect, and correct timing depends on the quasi sym-
metrical waveform of the input pulses for both filters.
The condition of waveform symmetry is satisfied in
practice as it is apparent from Figs. 29(a) and (b).

The filters derived here are optimized for timing
measurements as required to achieve the best position
resolution. Thus, they do not give the maximum possible
signal to noise ratio for amplitude measurements. How-
ever, the resulting signal to noise ratio for amplitude

In order to avoid crosstalk between the wires, the
use of charge amplifiers providing a "virtual ground"
at the input of the sensing wires seems compulsory.

The pulses called in this analysis "voltage pulses
at the wires" will be, in reality, the voltage pulses
at the output of the integrating preamplifiers. As
mentioned in Section 2, electrostatic calculations
provide the capacitance values reported in Fig. 8.1.
The noise induced on a sensing wire by neighboring ones
connected to their respective preamplifier virtual
ground inputs is negligible. The weighted contribution
of the two neighboring amplifiers used to obtain the
required y resolution is equivalent to an increase of
9% of the input noise en.
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TABLE I

(G/w) 1 = (TD/Tr) 1

2.972

2.515

2.48

ex1 [mm]

.167

.282

.432

(TM+ D)l [483

2.38

2.515

2.98

TABLE II

(G/w) 2 ' (TD/Tr) 2

3.192

2.53

2.84

eX2 [mm]

.152

.166

.2037

(M+TD) 2 [Ps]

2.554

2.532

3.408

TM/TD

1

1.5

2

TD 1 [E]

1.189

1.006

.993

TMl [Ps]

1.189

1.509

1.986

TM/TD

1

1.5

2

TD2 [Ps]

1.277

1.013

1.136

TM2 [is]

1.277

1.519

2.272
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Fig. 1.1. Array of circular sectors as ambiguity
resolver anodes for events with several
prongs.

x
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Fig. 2.1. Idealized geometry for a truncated chamber
having only one sensing grid.
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// ,~~~~~

j2nd sensing
wires
set

Fig. 1.2. Geometry of the grids and the reference
frame.
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anode

Fig. 2.2. Map of points at which the potential is
imposed in order to calculate the influence
coefficients and consequently the equi-
potential surfaces and field lines.

I1
1/2 w

Screen 6rid
V6

Sensing Grid
Vs

I Anode VA.0

Fig. 2.3. Equipotential and field lines for the first
set (a) of potentials (sensing grid at geo-
metrical potential), calculated with the
following parameter values: G - 2.66 mm,
R - 0.05 mm, W - 1 mm, VA/Eas G - 0, Vs/Eas
G - 2 and VG/Eas G - 4. The G/W ratio has
been chosen near the design value suggested
by Tables I and II.

2922

tEa$

-A

4%

r
B

Authorized licensed use limited to: Princeton University. Downloaded on December 11, 2008 at 21:18 from IEEE Xplore.  Restrictions apply.



I

I

I

0 0

6

anode

Fig. 2.5. Map of points at which the potential is
imposed in order to calculate the influence
coefficients in the Green function expression.

Fig. 2.4. Equipotential and stream lines for the sec-
ond set (b) of potentials ("defocusing"
sensing grid), calculated with the following
parameter values G v 2.66 mm, R - 0.05 m,
W - 1 MM, VA/Ega G - 0, VS/Eas G - 1 and

VG/Eas G - 3.0 The G/W ratio has been
chosen near the design value suggested by
Tables I and II.

Fig. 2.6a1 Green weighting function for a sensing wire:
overall isometric representation.
Calculated with the following parameter
values: G - 2.66 mm, R - 0.05 mm and
W - 1 mm.
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Fig. 2.6a2 Green weighting function for a sensing wire: Fig. 2.6b2 "Effective" Green function: enlarged
enlarged detail. Calculated with the detail. Calculated with the following
following parameter values: G - 2.66 mm, parameter values: G - 2.66 mm, R - 0.05 mm,
R = 0.05 mm and W - 1 mm. and W - 1 mm.

0

0

0

0

x

1-I~~~~~~

y

h - 4 point charge

0

x

0

C screen grid

1lst sensing
grid

anode

Fig. 2.6b1 "Effective" Green function: overall
isometric representation. Calculated
with the following parameter values:
G - 2.66 mm, R = 0.05 mm and W - 1 mm.

Fig. 2.7. Starting point of probe charge for the
definition of f(h,t).
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Fig. 2.8b. Induced charge waveform as calculated with
the effective Green function for the first
(a) and the second (b) set of electrode's
potentials.

Fig. 2.9b. Induced charge pulse due to tracks having
different angle e (and T - 9e0) for the
first set (a) and the second (b) set of
electrode's potentials.
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-track

wires

lj sin 'p-w

Fig. 4.1. Loci of constant charge "input pulses"
in the plane cp, 8.

Ls

N(q)
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.0

.4

.2

I ,

I
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1
1
1
1 I

0 2 4 a S Is 12

Fig. 4.2. Cumulative probability function N(q).

Pig. 3.1,2,3. Geometry of tracks with respect
to grid wires.
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Fig. 4.3. Loci of constant width X "input pulses"
in the plane co, e; X = T/Tr.

Fig. 5.1. Reference weighting function.

.2

1p.

.6

.4 -

.2

8 2 4 6 a 16

Fig. 4.4. Cumulative probability function N(X).

, 12

Fig. 5.2.a. Area of f(h,t) pulse as a function of h,
for set (a) of electrode's potentials,
giving an estimate of spatial resolution
in y direction when using the "effective
Green function" (a similar curve is ob-
tained for set (b) of electrode's poten-
tials).
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Fig. 5.2b. Same as for Fig. 5.2a, but using the
"true" Green function.

2

Tm/2

Fig. 6.1. 6-response of the first filter.

Fig. 6.2. Normalized reference pulses F r(t) gen-
erated by "input current pulses" of
increasing length T.
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Fig. 6.3. Normalized zero crossing slope n1 calcu-
lated for the voltage filter output
W1 (t) (Fig. 6.4), with Fr(t) as input
pulses.
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Wlr(t)

TM.1TO

Fig. 6.5. Normalized peak amplitude m of the
voltage filter output Wlr(td (Fig. 6.4),
with Fr(t) as input pulses.

0 I_z2I

Wir(t)

Fig. 6.6. 8-response of the second filter.
t

T-=10To

-e -4 -2 0 2 4 a

Fig. 6.4. Calculated filter output Wlr(t) for TM/TD= 1
and for several T/TD values.
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I=1.5TO

-3 -2 -1 8 1 2 3

Wzr (t )
Fig. 6.8. Normalized zero crossing slope n2 calculated

for the voltage filter outputs W2r(t) (Fig.
6.7), with Fr(t) as input pulses.

TN
= 1 5

TD

Fig. 6.7. Calculated filter outputs W2r(t) for
TM/TD = 1.5 and with several T/TD values.

Fig. 6.9. Normalized peak amplitude m of the voltage
filter output W2r(t) (Fig. 9.7), with Fr(t)
as input pulses.
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Fig. 7.1. Space resolution in nm in the drift (x)
direction when using the first filter,
as a function of x - T/Trp for three
different values of TM/TD.
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Fig. 7.3. Signal to noise ratio when using the first
filter as a function of x - T/Trp for three
different values of TM/TD.
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Fig. 7.2. Space resolution in mm in the drift (x)
direction when using the second filter,
as a function of X = T/Tr, for three
different values of TM/TD.
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Fig. 7.4. Signal to noise ratio when using the second
filter as a function of A - T/Tr, for three
different values of TM/TD.
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Fig. 8.1. Equivalent circuit for input capacitances
and noise sources at the amplifier input.
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