
end impedance of the quarter-wave line, and 0
represents the electrical length of the line. In this
figure the solid line is obtained from (11). It will be
observed that the experimental points are in close
agreement with the theoretical curve, the greatest
departure being of the order of 5 per cent. It is inter-
esting to note that there is no indication of the opti-

mum predicted by the previous theoretical results,
shown by the dashed line.
We must conclude, therefore, that the short-line

calculations based on previous theoretical formulas
are in error, and that the theory presented in this
paper is adequate for the design of transmission-line
circuits.

Currents Induced by Electron Motion*
SIMON RAMOt, ASSOCIATE MEMBER, I.R.E.

Summary-A method is given for computing the instantaneous
current induced in neighboring conductors by a given specified motion
of electrons. The method is based on the repeated use of a simple
equation giving the current due to a single electron's movement and is
believed to be simpler than methods previously described.

INTRODUCTION

N designing vacuum tubes in which electron
transit-time is relatively long, it becomes neces-
sary to discard the low-frequency concept that

the instantaneous current taken by any electrode is
proportional to the number of electrons received by

d g

A
Fig. 1

0

0

0

0

0

0

0
B C

Fig. 2

it per second. Negative grids, it is known, may carry
current even though they collect no electrons and
current may be noted in the circuit of a collector
during the time the electron is still approaching the
collector. A proper concept of current to an electrode
must consider the instantaneous change of electro-
static flux lines which end on the electrode and the
methods given in the literature for computing in-
duced current due to electron flow are based on this
concept.
A method of computing the induced current for a

specified electron motion is here explained which is
believed to be more direct and simpler than methods
previously described. In the more difficult cases, in
which flux plots or other tedious field-determination
methods must be used, only one field plot is needed
by the present method while the usual methods re-
quire a large number.

* Decimal classification: R138. Original manuscript received
by the Institute, September 16, 1938.

t General Engineering Laboratory, General Electric Com-
pany, Schenectady, N. Y.

METHOD OF COMPUTATION
The method is based on the following equation,

whose derivation is given later:

i = E,ev (1)
where i is the instantaneous current received by the
given electrode due to a single electron's motion, e
is the charge on the electron, v is its instantaneous
velocity, and E, is the component in the direction v
of that electric field which would exist at the elec-
tron's instantaneous position under the following
circumstances: electron removed, given electrode
raised to unit potential, all other conductors
grounded. The equation involves the usual assump-
tions that induced currents due to magnetic effects
are negligible and that the electrostatic field propa-
gates instantaneously.

SIMPLE EXAMPLE
A simple example is offered in the computation of

the instantaneous current due to an electron's motion
between two infinite plates (Fig. 1). (The result is
a starting point for the analysis of a diode, for
example, when the transit-time is long.)
From (1) we obtain immediately

ev
i = evE = -

d

In the literature' it is stated that this same result
is deduced from image theory. This involves the
setting up of an infinite series of image charges on
each side of the plates for a given position of the
electron and a consideration of the total flux crossing
one of the planes due to the series of charges, a
method which is lengthy and requires no little
familiarity with methods of handling infinite series.

THE GENERAL CASE
Consider a number of electrodes, A, B, C, D, in

the presence of a moving electron (Fig. 2) whose
path and instantaneous velocity are known. A tedi-
ous way to find the current induced in, say, electrode

1 D. 0. North, "Analysis of the effects of space charge on grid
impedance," PROC. I.R.E., vol. 24, pp. 108-158; February,
(1936).
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A is to make a flux plot of the lines of force emanating
from the electron, when it is at some point of its path,
and note the portion of the total lines which end on
A. By making a number of such plots it is possible
to observe the change in the number of lines ending
on A as the electron moves, and consequently to
compute the induced current. The accuracy is de-
pendent upon the number of plots made.

It is much simpler to use (1). One plot is made for
the case of A at unit potential, B, C, D grounded,
and the electron removed, Ev is then known and

i = E,ev.

To minimize the induced current in a negative
grid, an important consideration in the design of
high-frequency amplifiers and oscillators, it may be
that (1) will prove helpful to the designer. The equa-
tion states that the electrode configuration should be
such as to yield minimum E,. If the electron's path,
for example, is made to coincide with an equipo-
tential of the grid (not an equipotential in the field
in which the electron is traveling, of course, but an
equipotential in that artificial field due to unit po-
tential on the grid, the electron removed, and all else
grounded) the induced current will be zero. It will not
be possible to realize this for the complete electronic
path, since the electron must start at some equipo-
tential surface, but it may be possible to find prac-
tical configurations that will approach this condition
over a good share of the path.

DERIVATION OF EQUATION (1)

Consider the electron, of charge e, in the presence
of any number of grounded conductors, for one of
which, say A, the induced current is desired. Sur-
round the electron with a tiny equipotential sphere.
Then if V is the potential of the electrostatic field,
in the region between conductors

V2V = 0

where V2 is the Laplacian operator. Call Ve the
potential of the tiny sphere and note that V=0 on
the conductors and

- ds = 47re
r sn

sphere's surface

(Gauss' law)

where a V/an indicates differentiation with respect to
the outward normal to the surface and the integral
is taken over the surface of the sphere.
Now consider the same set of conductors with the

electron removed, conductor A raised to unit po-
tential, and the other conductors grounded. Call the
potential of the field in this case V', so that V2V' =0
in the space between conductors, including the point

where the electron was situated before. Call the new
potential of this point Ve'.
Now Green's theorem2 states that

f [V'V2V - VV2V']dv
volume
between
boundaries

aV av'-=_I V'V-V ds.
an an_

boundary
surfaces

(2)

Choose the volume to be that bounded by the
conductors and the tiny sphere. Then the left-hand
side is zero and the right-hand side may be divided
into three integrals:

(1) Over the surfaces of all conductors except A.
This integral is zero since V= V'=0 on these
surfaces.

(2) Over the surface of A. This reduces to
-Jf( V)/(an)ds,

surface A
for V' = 1 and V=0 for conductor A.

(3) Over the surface of the sphere. This becomes

r dV r av'
- Vet ds+VeV -ds.

1 an Jon
sphere's surface sphere's surface

The second of these integrals is zero by Gauss
law since f(( V')/(an)ds is the negative of the charge
enclosed (which was zero for the second case in
which the electron was removed).

Finally, we obtain from (2)
dv rav

0O -I ds-Ve' - ds
J an on

surface A sphere's surface

- 47rQA + 4ireVe'

or

QA= - eVe'
dQA dVeI [ aye' dx]

TA = = -e - = - e
dt dt L ax dti

where x is the direction of motion.

Now

dx aVe'
-= v and = -Ev,
dt ax

so
= evE,. (1)

2 J. H. Jeans, "Electricity and Magnetism," page 160, Cam-
bridge, London, England, (1927).
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