
J .  P H Y S .  B ( A T O M .  M O L E C .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  BRIT.IIK 

Longitudinal diffusion of electrons in electrostatic 
fields in gases 

H. R. SKULLERUD 
Electron and Ion Physics Research Group, Physics Department, Norges tekniske 
Hsgskole, Trondheim, Norway 
MS. receizled 30th October 1968, i n  recised form 24th February 1969 

Abstract. Expressions have been obtained for the longitudinal and lateral diffusion 
coefficients for electrons moving in electrostatic fields in gases, from the solution of 
the Boltzmann equation, Numerical results are quoted for the case of a collision 
frequency varying as the velocity raised to a power y ,  on the assumption of no thermal 
motions of the gas molecules, and for the case of a constant collision cross section, 
with thermal motions included. The  diffusion is found usually to be strongly 
anisotropic, in agreement with experimental measurements of Hurst and Parks in 
1966 and Wagner, Davis and Hurst in 1967. 

1. Introduction 
The free diffusion of electrons in electrostatic fields in gases, with no magnetic field 

present, has usually been assumed to be isotropic. Theories developed for the electron 
diffusion under this assumption, by Huxley (1960) and others, do satisfactorily explain 
experimental measurements of the lateral diffusion coefficient (Huxley and Crompton 
1962, Frost and Phelps 1962, and others). Measurements by Hurst and Parks (1966) and 
14;agner et al. (1967) on the longitudinal diffusion of electrons show, however, that the 
electron diffusion tensor generally is strongly anisotropic, and usually with the longitudinal 
diffusion coefficient smaller than the lateral one. 

In  the present work expressions are obtained for the components of the diffusion 
tensor from the Boltzmann equation, and physical arguments are advanced which explain 
the anisotropy. 

The  results of this work are in good agreement with recent theoretical work of Parker 
and Lowke (1968, 1969). 

2. Theory 
2.1. General considerations 

The diffusion tensor D for particles moving with a steady drift velocity ( v , ,  can be 
expressed as the correlation function between the random velocity v*(t) and the random 
displacement r*(t, T )  in the limit T -+ x (Skullerud 1969): 

v * ( t )  = v ( t ) -  : v >  
.t+r 

r * ( t ,  T )  = 1 v * ( t ' )  dt '  
i 

D = ( v * ( t )  1; v * ( t ' )  dt'). (3) 

The drift velocity does not enter into the expression for the lateral diffusion coefficient D,: 

C C ' ~  being one of the velocity components perpendicular to the drift direction. 

and the mass of a gas molecule justifies the use of two simplifying assumptions: 
In  the case of electron motion the small ratio m/-M between the mass of an electron 
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(i) The magnitude of the velocity is maintained nearly constant throughout many 
collisions. 

(ii) The persistence of velocity m/(M+m) is small, and may be put equal to zero 
when considering the motion perpendicular to the drift motion. 

The first assumption permits the use of a constant mean free time T M ( v )  for momentum 
transfer when calculating Dl from (4). The  second assumption then leads to the sub- 
stitution v,(t)~M(v) for the integral in equation (4). The expression for Dl then assumes 
the form 

D, = (vz27M(v)). (5) 

Inserting T M ( v )  = l/vM(v), vM being the momentum-transfer collision frequency, and 
averaging over a nearly isotropic velocity distribution function yields the well-known 
expression 

For the longitudinal diffusion coefficient D,,, equation (1) assumes the form 

\ 

r, being the velocity component in the drift direction. ( v , )  will usually be small compared 
with r2, except for the lowest-energy electrons, but can, nevertheless, not be neglected. 
This is due to the small value of the ratio 6 = T M / T ~  = ve/vM between the energy- and 
momentum-transfer collision frequencies, which allows an electron to move with a momen- 
tum-transfer frequency vM(v) different from the mean momentum-transfer frequency 
( v M ( v ) )  throughout many momentum-transfer collisions. 

An instantaneous drift velocity vd(z') different from (U,) can therefore be maintained 
by a given energy group for a long time, and the resulting spread in drift velocities for 
the different energy groups should be expected to give a contribution to D,, (positive 
or negative) of the order of magnitude 

This can easily be seen to be of the same order of magnitude as the lateral diffusion coeffi- 
cient D,, except for the special case of a velocity-independent collision frequency, where 
r d ( v )  = ( v , }  for all v ,  

2.2. The Boltzmann equation 
The  diffusion problem was formulated in terms of the Boltzmann equation by Wannier 

(1953), who calculated the longitudinal diffusion coefficient for the case of a mass ratio 
m/M = 1, solid-sphere interaction and strong electric fields. Wannier's method, adapted 
to the problem of electron diffusion, is used in this work. In  this section his formulation 
of the diffusion problem will be briefly resumed. 

The  Boltzmann equation for the electron (or ion) velocity distribution function 
f ( r ,  v, t) may be written 

af df af 
-+v  . - + a .  - = C ( f )  
at ar an (9) 
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C(f) being the collision integral and a the acceleration of an electron in an electrostatic 
field E :  

eE 
m (10) a =  - _ .  

IVannier solves equation (9) in two stages. In  the first, only the term a . i3f/av is retained 
on the left. In  the second, the full equation is used, with the new terms treated as per- 
turbations. 

The first stage describes an electron gas with a uniform number density n and no 
time dependence. The solution of equation (9) may then be written 

f(.) = nh(v) (11) 
h(v) being a velocity distribution function normalized to unity : 

h(u) d32. = 1. 

The drift velocity ( v )  = ( v , )  is normally defined as the average velocity in the absence 
of density gradients : 

( V  > = 1 v,h(v) d3.?. (13) 

In  the second stage the influence of a density gradient is included, giving rise to a diffusion 
velocity vd i f f  in addition to the drift velocity: 

J^ n.f(r, v ,  t )  d3v = n(r ,  t ) (  <:v> +%iff). (14) 

For sufficiently small relative density gradients k 

the diffusion velocity is proportional to k, with the diffusion tensor as the proportionality 
factor: 

vdlff = -D , k. 
T o  calculate the diffusion tensor, Wannier assumes k to be constant, i.e. he assumes a 
density 

n(r, t )  = no exp(k . ( r  - ( v ) t ) )  

and for.f(r, v ,  t )  uses the substitution 

f(r, U, t )  = n(r ,  t){h(v) + d(v)). 

(16) 

(17) 

(18) 
d(u)  is the perturbation on the velocity distribution function due to the density gradient, 
and is normalized to zero: 

d(v)  d3?. = 0. 
The diffusion velocity is 

ndl f f  = 1 vd(v) d3Z'. (20) 

Insertion of equation (18) in the Boltzmann equation (9) yields the following equation for 
d( v )  : 

i.d 
a .  CV - C(d) = - k  . ( v -  , v ) ) { ( h ( v ) + d ( v ) } .  (21) 

If h(v) $ d(v), d(v)  and hence vdl f f  are seen to be proportional to k, in agreement with 
equation (16), as C(d) is linear in d. 
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If we consider diffusion only in the direction of the electric field, k may be chosen in 
the z direction. The d(v) term is omitted on the right of equation (21), and a reduced 
velocity distribution function 

is substituted instead of d(v) .  The equation for g(n) becomes 

h(v) is determined by 
coefficient is 

the homogeneous form of equation (23). 

(23 ) 

The longitudinal diffusion 

The  lateral diffusion coefficient is given by equations similar to equations (23) and (24): 

D, = - J-i3g’(v) d3c. 

It is, however, easier to calculate D, by means of equation (j), and equations (25) and (26) 
will accordingly not be used here. 

2.3. Solution of the Boltzmann equation 
The functions g(v) and h(v) are expanded in Legendre polynomials : 

( 4 4  -lg(v) = go(.) +gl(z.)pl(cos e )  + . . . 
( 4 4  - = h,(-i) + h,(z.)Pl(cos e )  + . . . 

P , ( ~ ~ ~  e )  

8 being the angle between v and a. 
The expansion (27) is inserted in equation (23), which is multiplied with 

and subsequently integrated to yield an infinite set of coupled equations : 

The functions h,(u) are determined by the homogeneous form of equation (29). 

isotropic, and equations (29) can be simplified by the assumptions 
In the case of electron motion the velocity distribution function will usually be nearly 

(see, for example, M’annier 1953). The assumptions (30) lead to the following approximate 
equations for go and ,ql : - 

= - (EZ)ho+;chl 

dgo 
0 Cl(g) - a  - = ‘ ~ 4  

d-i 
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and similar homogeneous forms for h,  and h,. If we specialize to the case of elastic collisions 
only, the collision integrals Co(g) and C,(g) attain the Davydov form 

(33) 

= -vMgl ( 3 4 )  
(Shkarofsky et al. 1966, equation (3-58)), vM being the momentum-transfer collision 
frequency, k the Boltzmann constant, T the gas temperature and 5 the ratio between the 
energy- and momentum-transfer frequencies : 

Equations (33 )  and (34 )  are valid also when inelastic collisions are of importance, as long 
as the inelastic energy losses are small compared with k T  (Shkarofsky et al. 1966). This 
will be the case, for example, for rotational energy losses in nitrogen at room temperature. 
-2 velocity-dependent [(v) must then be used. Equations (31 )  and (32 )  may now be written 

mc dr: 
a d  

3c2 de 
- - (8,722) - 

dgo a-+vv,g, = -eh,. 
dc  (37) 

.After multiplication with zi2, equation (36 )  may be integrated directly. If we insert g, 
from equation ( 3 f ) ,  the following equation for go is then obtained: 

h0(c) is given by the homogeneous form of equation (38 ) ,  which has as solution the Davy- 
dov distribution (Davydov 1935) 

-4 is a normalization factor, which is determined by the condition 

ho(z\)e2 de = 1 rl 
hi is obtained from the homogeneous form of equation ( 3 7 ) :  

a dlz, 
12,(c) = - --. 

V M  de 
For go(.) we now make the substitution 

go(.) = Y(r:)ho(r:) (41) 
which is inserted into equation (38) .  Further, the integral o17er hi is transformed to an 
integral over h ,  by the use of equation (40) and a partial integration: 

a 
~ , ( w ) w ~  dw = - - c3h,(e) + c , j ( ~ ~ ) h , ( w ) w ~  dw. 

3v (42) 
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Here the substitution 

has been made, zd(v) being the instantaneous drift velocity for electrons with a velocity 
of magnitude U (Huxley 1960). 

The equation for y(v)  now becomes 

It will not be necessary to solve this equation for y to find the diffusion coefficient D,,, 
given by equation (24). The use of (27) and (37) yields 

Dl1 = - tq2g(a) d3r = - i 
The first term on the right is recognized as the lateral diffusion coefficient DL (see equa- 
tion (6)): Im hO(c)c2 dz.. (46) D ' = 3  0 V M  

The longitudinal diffusion coefficient may thus be written 

Dl ,  = D,+D, 

- e3 dg, , 

A partial integration transforms the expression for D1 to 

Insertion of go(.) = y(z.)h,(e) yields, after a partial integration, 

D, = - 1," y(z.)ho(c)cd(~)c2 dz. 

(47) 

The normalization condition equation (19) is used to find y(co). With the use of equa- 
tions (22), (27) and (41), and after a partial integration, equation (19) yields 

An expression for the lateral diffusion coefficient may now be written down, using equa- 
tions (44), (47), (49) and (50): 
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.U 

I ( r )  = .I (rd(zu)- <e.,))ho(c)z2 de. 
0 

D, is giT-en by equation (46), h0(v) by equation (39), ed(c) by equation (43) and ( r z>  is 

(rz) = 1'; ~ ~ . ~ ( e . ) h ~ ( r ) z ~  dz.  
0 

(53) 

3. Numerical calculations 
The longitudinal and lateral diffusion coefficients have been calculated numerically 

from equations (46) and (51) for the following cases: (i) elastic collisions, a velocity- 
independent mean free path A, for momentum transfer (A, = z'/vM) and ratios a /T  
between the acceleration and the temperature varying from zero to infinity; (ii) elastic 
collisions, a collision frequency v(z) K '1" ( -  1 < y < 3) and a temperature T = 0. 

t 

LA 
0 2 4 6 8 10 I I  

$1'2 

Figure 1. The dimensionless diffusion coefficients dll = X D l l u ~ ( k T / m )  -11' and 
d l  = A\rD_oM(kT/m)-l ' as functions of the dimensionless field parameter 
G = (EiLV) (e /kTuM) (M/m)l 2 ,  Asymptotic values for large and small t" are shown as 

broken lines. 

(i) The  results for a velocity-independent mean free path are shown in figure 1, where 
the dimensionless quantities 

are given as functions of the dimensionless field parameter 

E e  1 2  

S k T o ,  

1V is the gas molecule number density and uM is the momentum-transfer cross section 
( U ,  = l/&VA,). For small values of 8, d,, and d, approach the same (thermal) limit 

d l l (  8 = 0) = d l ( 8  = 0) = 1.596. (56) 
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The  asymptotic values for large values of 8 are 

It may be noted as a curiosity that, at small values of d, d, ,  at first decreases with increasing 8, 
reaching a minimum value of 1.48 at E 2: 2 .5 ,  

(ii) The results for a collision frequency varying as the velocity raised to a power y :  

are shown in figure 2, where the dimensionless diffusion coefficient 

a ( Z - Y ) ( l f y )  - 1  -1 1 8, = D ,  [A-[(!!)' 
vM(z'O) m z.OVM(z'O) 

and the ratios Dl l /Dl  are given as functions of y. At y = 0, 6, = 113 and D l l / D I  = 1. 

(59) 

I I -~ d I 
-I 0 1 2 3 

Y 

0 I /  

Figure 2. The dimensionless diffusion coefficient 6 1  (equation (59)) and the ratio 
D,; /Dl  of the longitudinal to the lateral diffusion coefficient for the case of a strong 

electric field and a collision frequency vhl tc vy, as functions of y. 

In  the whole range investigated both 6, and D l l / D ,  increase with decreasing y ,  and 
approach infinity as y -+ - 1. The reason for this divergence is evident when considering 
the Davydov distribution (39), which does not approach zero at large velocities for y < - 1. 
Physically this must be interpreted as due to the occurrence of runaway electrons, which 
makes the concept of a stationary velocity distribution function meaningless, 

At y 2 3 the expressions which are used to calculate D,,  and D, do also diverge. The 
reason for this is, however, not physical, but is due to the use of the simplifying assump- 
tions (30). The divergence occurs in the low-energy limit z1 --f 0, where the assumptions 

< I  
gl h ( C Z >  

- N - N -  

gl-1 h-1 z' 

are no longer applicable. 
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4. Discussion 
The expressions found in 5 2.3 for the longitudinal and lateral diffusion coefficients 

are valid for elastic and weakly inelastic collisions only. When inelastic collisions with 
energy transfer larger than thermal energies but still small compared with the electron 
energies become important, these can easily be taken into account by a modification of 
the collision integral (33),  as has been shown by Shkarofsky et al .  (1966). If, however, 
the energy transfer in an inelastic collision is not small compared with the electron energies, 
as will be the case when vibrational excitation is of importance, then the Boltzmann 
equation cannot be transformed to a differential equation, but will show up as a difference 
differential equation. The  solution of equations (31) and (32) will then be considerably 
more difficult, but can be performed by methods as used by Frost and Phelps (1962). 
Qualitatively the ratio Dll/Dl must be expected to  behave in the same way when inelastic 
collisions are of importance, as when only elastic collisions need to be taken into account. 

The  physical reason for the difference between the longitudinal and the lateral 
diffusion coefficients can be outlined as follows: 

Let us consider the case of a collision frequency vM(z.) increasing with the velocity. 
electron diffusing against the a direction will lose energy, and thus acquire a lower 

velocity, a lower collision frequency and an increased instantaneous drift velocity, which 
after some time (of the order T~ = T ~ ( c ) / [ )  will have reduced the distance which the 
electron lagged behind the average electron position. Similarly an electron diffusing in 
the a direction will gain energy, and acquire a lower instantaneous drift velocity. The  
longitudinal spread of a group of electrons will thus be diminished compared with the 
lateral spread due to a 'drift-phase-stabilization' mechanism. 

We shall consider then the case of a collision frequency v(v)  decreasing with increasing 
velocity. In  this case an electron which has diffused against the a direction will have a 
lower instantaneous drift velocity, and an electron which has diffused in the a direction 
has an increased instcntaneous drift velocity. The  longitudinal spread of a group of 
electrons will thus be enhanced compared with the lateral spread. 

I t  should be noted that the concept of diffusion can only be used either when the time 
intervals considered are large compared with the autocorrelation time for the random 
velocity, or when the relative change of density is small over a distance Zwhich an electron 
traverses during this time : I . On 'ne 1. For the longitudinal component of the random 
velocity this time is of the order of a mean free time for energy transfer, but for the lateral 
component it is of the order of a mean free time for momentum transfer, which is usually 
much less. In  an experiment this means that the longitudinal spread of an electron 
swarm can usually be considered as being due to a diffusion process only when the electric 
potential difference between the electrodes is large compared with the average electron 
energy. .It smaller potential differences the use of a diffusion equation to calculate the 
longitudinal motion of the swarm cannot be justified, except at energies near thermal 
energies. These restrictions do not apply to the lateral motion of the swarm. 

5. Conclusion 
Expressions have been obtained for the longitudinal and lateral diffusion coefficients 

for electrons moving in electrostatic fields in gases under the influence of elastic or weakly 
inelastic collisions. Numerical evaluations of these expressions, and also qualitative 
physical arguments, show that the lateral diffusion coefficient is larger than the longi- 
tudinal one when the momentum-transfer collision frequency v M  increases monotonically 
with increasing yelocity z!, but is smaller than the longitudinal one when v M  decreases with 
increasing E.  

The results of this work explain the experimental measurements of Hurst and Parks 
(1966) and Wagner et a l .  (1967) on the longitudinal diffusion of electrons, and are in good 
agreement with recent theoretical works of Parker and Lowke (1968, 1969). 
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