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Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected neutrino
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interr%]:gxm%%%%j&by the Standard Model. Detection of CNNS could provide benefits for applications

such as antineutrino-based nuclear reactor monitoring and astrophysics research (flavor-independent solar and supernova neutrino detection). As the first step in the search for CNNS
using dual-phase noble gas detectors, it is necessary to first measure the ionization yield, i.e. the amount of ionization produced in nuclear recoils predicted for CNNS, in the range of
typical neutrino energies used in future CNNS experiments. We have built a small dual-phase argon detector (~150 g active mass) for the purpose of measuring the ionization yield with
elastic neutron scatters. We will use a 1.93 MeV proton beam to bombard a lithium target producing neutrons via the “Li(p,n,)’Be reaction. The neutrons will then primarily scatter off of
the ~80 keV resonance of “°Ar providing a source of nuclear recoils. With this method, we will be able to perform a measurement of the ionization yield at Erecoil ~7 keV, the energy

relevant for the search for reactor antineutrino coherent scatter in argon. We

will present in detail the method of measurement along with our progress on the measurement of the

lonization yield in liquid argon (LAr). We will also present the expected sensitivity of a dual-phase argon detector for detecting CNNS.
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Detector Development and Operation

We have measured 10% sigma energy resolution at the 5.9 keV >°Fe peak

. Demonstrated the ability to observe single liquid electrons
« Obtain 2.8 keV 3’Ar K-shell peak and the 0.27 keV L-shell peak; sensitivity down to ~0.1 keVee
Next step is to measure the ionization yield at keV energies
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Number of electrons generated in a CNNS
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source in LXe and LAr based on the atomic
collision based Monte Carlo model.
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Unknown ionization yield in liquid argon at low keV energies
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See poster 195 by S. Sangiorgio et al. for full detector details.
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g« Only have a Monte Carlo model predicting the ionization yield at these low energies
To better know the sensitivity of the CNS detectors, the ionization yield must be measured at keV energies

lonization Yield Measurement
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Using a 1.93 MeV
proton accelerator at
the Center for
Accelerator Mass
Spectrometry

(CAMS) at LLNL, »
neutrons are
generated up to an
hielding energy of ~75 keV
through the "Li(p,n)
"Be reaction.
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Simulated spectrum with the ionization yield equal to
that of electronic recoils and assuming a constant
lonization yield

The detector will be placed off-axis at ~46° to reduce the Neutron scatter cross sections for Fe
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the lower energy neutrons which will produce a

flatter plateau and more distinct shoulder to obtain

the ionization yield at 7 keV.
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