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! The LArIAT projectʼs different stages employ PMT-mounted scintillation counters 
for the purpose of measuring the flux of muons along different paths through the TPC. A 
critical initial step in ensuring that these counters are calibrated properly and function 
efficiently is a test of the agreement between their measured muon incidence rates 
under certain conditions and the theoretical values for such rates. These theoretical 
values are  based on the dimensions of the detector and existing knowledge of ground-
level cosmic muon flux.

Phase 1

! LArIAT Phase 1 features two trapezoidal scintillation counter configurations 
situated at each end of the cryostat. Our goal is to calculate a theoretical muon 
incidence rate through both counters, assuming 
they are separated by the cryostat length d = 1.63 
meters. The trapezoidsʼ centers are separated 
both by a horizontal distance x = 0.778 m and a 
vertical distance s = 0.652 m, so that they appear 
near opposite “corners” of the cylindrical cryostat. 
We make the simplifying approximation that the 
trapezoids are rectangles of dimensions w x h = 
0.298m x 0.504m. 
! Since flux is measured in units of m-2s-1sr-1, 
a process determining the total number of particles 
per second through the two counters must account 
for the area of the counters and the solid angle 
effectively seen by the configuration. A method of 
doing so, found in “Flux through two cosmic ray 
detectors” by Emily Adlam (LArTPC docdb # 730), is 
shown in Figure 1, and begins by considering the 
cosmic muon flux and solid angle “viewed” by a 
differential area element on one detector. In the vertical direction, that differential area 
element dA receives particles from a continuous range of angles from θ1 to θ2. Although 
not shown, the horizontal direction is similar to Fig.1, with θ1 and θ2 replaced by the 
azimuthal angles ϕ1 and ϕ2. For a given θ and ϕ, the total number of particles crossing 
dA is dependent on the area dA, the differential solid angle, dΩ, which in spherical 
coordinates is equal to

and the flux of particles through dA, which has a sine squared dependence on θ and 
additional cosine dependences on θ and ϕ. The first dependence is characteristic of the 
angular intensity of the cosmic muons, and the latter two are included as part of the 
fluxʼs constraint that particles move in directions perpendicular to dA. Thus, the 
differential particle rate element is 

Fig. 1: Vertical Schematic of 
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where F is the vertical muon flux, or F ≅ 88 particles m-2s-1sr-1. By integrating this 
expression over the θ and ϕ ranges, we may determine the number of particles passing 
through the first detector and dA on the second in Figure 1. For the angles θ1 to θ2 in 
the integration limits, we use

with similar equations for ϕ1 and ϕ2 (where s and h are replaced respectively by x and 
w). With these as our integration limits, we then take the integral

! The precise final step in determining the muon incidence rate would be to 
integrate this result over all differential area elements of the counter on the right in 
Figure 1, accounting for the changing angles of θ and ϕ. However, we rely on an 
approximation to simplify matters. Due to the large separation d (1.63 m) of the counters 
relative to their sizes, we assert that all of the specific solid angles “seen” by each 
differential element on the right counter are approximately the same. This enables us to 
calculate this last integral and simply multiply it by the area of the counter to determine 
the total number of particles passing through both. When our values are inserted into 
these equations, our result is a muon count rate of approximately R = 0.023 or 0.02 Hz 
passing through both counters.

Phase 2:

! This phase features a muon telescope, where several parallel counters constitute 
one board, and another similarly constructed board is below and oriented 90º with 
respect to the first. Here, our objective is again to determine the cosmic muon flux 
through the two counters.
! Because our detectorsʼ effective areas are roughly two meters wide by three 
meters in length and are thus not very long and thin, we first make the approximation 
that we can roughly model these counters by circular ones of the same area. Figure 2 
displays our approximated configuration. The solid angle “seen” by a differential area dA 
is again calculated, and this time we take the point in the center of the bottom counter to 
be dA so that circular symmetry can be employed. To find the particle incidence rate 
through this differential point, the equation that we must integrate is this: 



    

where 
F is again the vertical flux of muons, the cosine 
squared term reflects the angular dependence of this 
flux, the next cosine term projects the flux onto the 
axis through the circular counters, and the sine term 
is part of the solid angle definition.
! To determine the angle θ1, we noted that the 
tangent of θ1 is equal to R/d, so

Given that R in our case would be 1.36 m and our first of four values for d is set at .25 
m, θ1 is 1.39 radians. Carrying out the integral above, we find a rate through dA of 138 
Hz.
! Although Phase 1ʼs method of finding the total flux through the counters by 
multiplying the flux through dA by the total counter area does not work very well when 
considering small counter separation distances, we nevertheless applied this process in 
each case to receive an upper limit to the total particle incidence rate. The second 
column in Table 1 displays the results for various values of d.
! With separations of .25, .5, 1, and 2 meters, the approximation that the counters 
are sufficiently separated so that each dA sees essentially the same solid angle is not 
very appropriate. The counters are much too close together for the values determined to 
be accepted as precise. They are only upper limits to the particle incidence rate. For our 
approximation, we assumed all differential area elements dA can be modeled by the 
one in the center of the circle. For different differential area elements, the average angle 
θ seen by the element would be larger, and therefore the cosine squared term in the 
integral would cause any given 
differential element of solid angle 
to contribute less on average to 
the total flux across dA. Thus, our 
approximation is high in all cases.
! After this approximation, we 
made a more precise estimate of 
the muon incidence rate through 
the two counters. For this process, 
refer to Figures 3 & 4. We first 

 

Table 1: Phase 2 Results
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consider the muon incidence rate through a 
differential area element dA in the corner of 
the lower counter and another differential area 
element dAʼ at any point in the upper counter. 
The angle θ between the vertical and the line 
connecting dA and dAʼ is equal to

where xʼ is the x coordinate of dAʼ on the top 
counter and x is the x coordinate of dA on the 
bottom counter. The same applies to yʼ and y, 
and d is the distance between the counters. 
The muon incidence rate through these two 
area elements will have a cosine squared 
dependence due to the angular intensity of 
muon flux, will have another cosine 
dependence due to the fact that flux is 
perpendicular to the plane through which it is 
calculated, and must also take into account 
both the area of dA and the solid angle it sees. 
The differential solid angle defined in 
Cartesian coordinates is 

These vectors and lengths are shown in Figure 4. For a given dA, we need to integrate 
over all dAʼ, and the final step is to integrate over all dA. Thus, the pertinent integral is

Since both vectors in the dot product are of unit magnitude, this becomes
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Figure 3: Precise Estimate of 
Muon Incidence Rate for LArIAT 

Phase 2.

Figure 4: Additional Vectors and 
Calculation Aides of Phase 2.
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Because r is just the distance between the two counters in the direction of the vector 
between dA and dAʼ and because θ has already been defined above, the integral thus 
becomes

Due to the complexity of this integral, we used numerical methods to perform this 
calculation, with the x, y, xʼ, and yʼ bounds being the lengths and widths of the two 
identical counters. For counter lengths (xʼ-x) = 1.82m and widths (yʼ-y) = 3.2 m, our 
results are in the third column of Table 1. For each separation distance, this method 
yielded results that were lower than the initial approximation. This change is expected, 
since the approximation can only be made by considering the point on the bottom 
counter that grants the smallest θ angles, and therefore the largest muon incidence 
rates.
! To test our precise method for agreement with the first approximation at 
separation distances where the approximation models the situation well, we compared 
the results of the two with d = 50 m. We found that the two differed little. The precise 
method yielded a muon incidence rate of about 1.20 Hz, and the first approximation 
yielded a rate of 1.21Hz. This displays an error of only about 1%, which supports the 
idea that the more precise method is in fact viable.


