A Few Comments

John Freeman, 3/8/16

- -



Boundary Conditions

e We've discovered that, given an uncompressed spill, the RAM
Pheeded”to process it with an art module is twice the size of
e spi

® Haven’t proved this, but almost certainly even worse when the
spill is compressed

® The upshot? You won’t be able to process everything in RAM
on a grid node if you have a spill >1 GB

® Unclear how much heavy swap space usage would slow things
down, but it’s probably not pretty

e Coincidentally, TBuffer, used to pass artdaqg::Fragment objects
between eventbuilders and aggregators, can’t hold more than
1 GB - again, a Root issue

® https://root.cern.ch/phpBB3/viewtopic.php?t=9469

e QOther?




void EventBuilder::loadDigits_(LariatFragment * & LArIATFragment)
{

if (fTreeIndex != fNumberInputEvents) {
artdaq: :Fragments * fragments = getFragments(fFragmentsBranch, fTreeIndex++);

if ((*fragments).size() > 1)
throw cet::exception("EventBuilder") << "artdaq::Fragment vector contains more than one fragment.";

artdaq: :Fragment frag = fragments->at(0);
const char * bytePtr = reinterpret_cast <const char *> (&*frag.dataBegin());

LArIATFragment = new LariatFragment((char *) bytePtr, frag.dataSize() * sizeof(artdaq::RawDataType));

// get SpillTrailer
LariatFragment::SpillTrailer const& spillTrailer = LArIATFragment->spillTrailer;

// get timestamp from SpillTrailer, cast as uint64_t
fTimestamp = (static_cast <std::uint64_t> (spillTrailer.timeStamp));

e Shouldn’t be too difficult to handle spills split into
separate events

® We could modify EventBuilder::loadDigits_, called
on each event, to “sit on” events and stitch together
the spill, then passing it to LariatFragment




